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The frequency response of the shear layers separating from a circular cylinder subject 
to small-amplitude rotational oscillations has been investigated experimentally in 
water for the Reynolds number (Re) range 250 to 1200. A hot-film anemometer was 
placed in the separated shear layers from 1 to 1.5 diameters downstream of the 
cylinder, and connected to a lock-in analyser. By referencing the lock-in analyser to 
the cylinder oscillations, the amplitude and phase of the response to different 
frequency oscillations were measured directly. It is shown that rotational oscillations 
corresponding to cylinder peripheral speeds between 0.5 and 3% of the free stream 
can be used to influence the primary (KQrman) mode of vortex generation. For Re 
greater than z 500, such oscillations can also force the shear-layer vortices 
associated with the instability of the separating shear layers. Corresponding to the 
primary and shear-layer modes are two distinct peaks in response amplitude versus 
frequency curves, and two very different phase versus frequency curves. The 
response of the shear layers (and near wake) in the range of KBrmBn frequency 
suggests qualitative similarities with the response of an oscillator near resonance. 
Forced oscillations in the higher-frequency shear-layer mode range are simply 
convected by the shear layers. Close to the cylinder, the shear-layer response is 
shown to be comparable to that of generic free shear layers studied by others. 

1. Introduction 
The formation and shedding of vortices from circular cylinders and other bluff 

bodies has been the subject of a great deal of study for over a century. It is well 
known, for example, that for most Reynolds numbers (Re) of practical importance, 
the so-called Karman vortices form and are shed to the rear of the body, and may 
persist for some distance downstream into the wake. Reviews of the shedding 
phenomenon can be found in Berger & Wille (1972), Mair & Maul1 (1971), Wille 
(1974), King (1977), Blake (1986, ch. 4), and Ortel (1990). A number of researchers 
have studied the effects of flow-induced and forced cylinder vibration on the cylinder 
wake, for which King (1977), Bearman (1984), and Blake (1986) provide good 
reviews. In general, it has been shown that when the cylinder vibrates at or near the 
natural Karman frequency, the vortex shedding synchronizes with, or locks-on to, 
the cylinder motion. 

A comparatively smaller number of researchers have studied the effects of 
rotational oscillation of the cylinder. Okajima, Takata & Asanuma (1975), showed 
both experimentally and numerioally that for Re 40 to 160 and 3050 to 6100, at 
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oscillation frequencies at  or near the Karman frequency, the vortex shedding 
synchronizes with the cylinder motion. Wu, Mo & Vakili (1989), have more recently 
done work similar to Okajima et al., at Reynolds numbers 300 and 500. Taneda 
(1978) studied the effects of rotational oscillation at  Re 30 to 300, and showed that 
at very high oscillation frequencies (and magnitudes), the stagnant-fluid region 
behind the cylinder, as well as the vortex shedding process, could be nearly 
eliminated. Tokumaru & Dimotakis (1991 ) have shown that rotational oscillation at  
very large magnitudes can produce significant reductions in drag on the cylinder. 

A number of researchers have studied a mode of vortex shedding in the cylinder 
wake associated with the laminar-to-turbulent transition in the separated shear 
layers (Bloor 1964; Gerrard 1978; Wei & Smith, 1986; and Kourta et al. 1987). The 
work of Bloor, Gerrard and Kourta et al. suggests that the frequency of shedding, fsL, 

of the shear-layer vortices can be related to the Karman frequency, fK, by the 
proportionality fsL/fK cc Re;, where Re is the Reynolds number based on the cylinder 
diameter d and free-stream speed U .  Kourta et al. suggest that the constant of 
proportionality in the above relationship is approximately 0.095, i.e. 

fsL/fK x 0.095Rei. (1) 

Peterka & Richardson (1969) showed that the secondary instability or mode of 
vortex shedding can be excited by sound. Dale & Holler (1969) showed that shear- 
layer vortices could be excited by vibrational oscillation of the cylinder. Their results 
suggest a non-dimensional frequency for the secondary instability approximated by 

fsL d / U  x 0.02Rei. (2) 

It is shown in the present study that relatively small-amplitude rotational 
oscillations, in which the peripheral speed of the cylinder is only 0.5 to 3% of the 
free-stream speed, can couple to both modes of vortex shedding. By rotationally 
oscillating the cylinder a t  or near the natural KirmSn frequency, the primary or 
KBrmBn mode of vortex shedding can be affected and, for Re greater than x 500, 
rotational oscillation at  higher frequencies can be used to force the secondary 
instability of the separating shear layers. (We use ‘secondary instability’ as 
synonymous with ‘ shear-layer instability ’ though some authors associate the former 
expression with three-dimensional effects in general shear flows.) 

Figure 1 illustrates the response to small-amplitude oscillations made visible by 
injecting a dye into the water immediately upstream from the cylinder. The 
photographs show flow past both a stationary and rotationally oscillating cylinder 
at  Re = 925. The shear layers separating from the stationary cylinder are relatively 
smooth, and wrap up into the KarmBn vortices that are forming. Shear-layer 
vortices are not normally observed in this range, and have been reported in the 
literature only down to around Re x 1100 (e.g. Wei & Smith 1986). Figure 1 ( b )  shows 
the effect of oscillations at roughly 3 times the KBrman frequency with the maximum 
cylinder peripheral speed approximately 2.5% of that of the free stream 
(corresponding to angular displacements of about lo). As illustrated by dye flow 
visualization, shear-layer vortices are generated which are qualitatively similar to 
those observed in a stationary cylinder wake, for example, by Wei & Smith (1986) 
at higher Reynolds numbers. Observations like those in figure l ( b )  helped to 
motivate the experimental arrangement used for our more quantitative study of the 
wake’s response. 
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FIQURE 1. Demonstration of shear-layer (or secondary) vortex generation by rotational oscillation 
of the cylinder (Re = 925, F = f d / U  = 0.67, l2 = wmaxd/2U = 0.025, d = 1.27 cm). (a) Stationary 
cylinder, natural shedding, ( b )  rotationally oscillating cylinder, forced shear-layer vortex shedding. 

2. Experimental arrangement 
To measure the response of the separated shear layers and near wake to small- 

amplitude rotational oscillations of the cylinder, a hot-film anemometer was placed 
approximately in the centre of the shear layers between 1 and 1.5 diameters 
downstream of separation (figure 2). The shear-layer thickness in figure 2 is 
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FIGURE 2. Flow past a circular cylinder subject to small-amplitude rotational oscillations 
(conceptual) showing shear layers and location of anemometer probe (shear-layer thickness 
exaggerated). 

Function generator 
(square wave out) 

Attenuator Anemometer box 

Digital 
oscilloscope 

FIGURE 3. Experimental arrangement for measuring the frequency response with a hot-film probe 
(see text). The oscilloscope may be used to directly monitor either the fluctuations of the 
anemometer voltage or the output of the phase-sensitive detector. 

exaggerated, being only several millimeters in the actual experiments, or 10 % or less 
of the cylinder diameter. The anemometer was connected to a Princeton Applied 
Research Model 5204 lock-in analyser (also known as a phase-sensitive detector) 
which, in turn, was referenced to the signal generator which controlled the cylinder 
rotation (figure 3). In this way, direct measurements of frequency response of the 
shear layers or near wake were made, for both response amplitude and phase relative 
to the cylinder rotation. 

The lock-in analyser was calibrated to give the amplitude, u’, of the oscillating or 
fluctuating velocity signal at  the reference frequency, which in this case was the 
fundamental forcing frequency f. Calibration of the lock-in analyser is explained in 
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FIGURE 4. Schematic time dependence of the angular motion of the cylinder. The angular velocity 
is a triangle function with rounded extrema. Typically w,,, x 0.1 rad/s and the maximum rotation 
angle x lo. 

greater detail in the Appendix. The unsteady anemometer velocity signal, u( f, t ) ,  is 
assumed to be of the form 

(3) 

where uo(f) is the mean velocity at  the particular forcing condition, u’ is the 
amplitude of the oscillating velocity component at  the frequency f of forcing, and 
u,( f, t )  is the zero-mean residual of oscillating velocity components at  frequencies 
other than f. As indicated by the arguments shown, each term in the decomposition 
on the right-hand side may depend on the choice of the forcing frequency. 

Cylinder oscillation was accomplished using a pulse-driven stepper motor with a 
periodic change of direction controlled by the function generator. The cylinder was 
mounted on the axis of a rotary table which was coupled to the stepper motor 
through a worm gear (figure 3). The resulting cylinder motion approximated that of 
a triangle wave in angular position, or a square wave of clockwise and 
counterclockwise angular velocity (figure 4 ) .  The square-wave’s rise time was much 
shorter than the period l / f .  Two cylinder diameters were used: 0.95 cm and 1.27 cm. 
The free end of the cylinder was in each case lowered into an open-channel water 
flume having a width of 91 cm and length of 21 m. The cylinders were not lowered 
to the full depth of the flume (32 cm) to avoid flow separation at the flume bottom, 
providing submerged length-to-diameter ratios of 20 (1.27 cm cylinder) and 24 
(0.95 cm cylinder). Finite-length, free-end, and free-surface effects were not studied 
in great detail, as it was assumed that they would principally affect the natural 
shedding, and, to a much smaller extent the flow response to cylinder oscillations 
close to the cylinder. Justification of this assumption is demonstrated by both the 
primary and shear-layer instabilities following the trend of the data from other 
researchers. The natural Strouhal frequencies were typically depressed by less than 
5% below the measurements of Roshko (1954). The hot film was placed 
approximately 2.5 cm below the free surface. In the vicinity of that depth, flow 
visualization indicated the flow was generally two-dimensional and the variation of 
the incident velocity with depth was also found to be negligible. The turbulence 
intensity of the incident flow was measured to be less than 1 %. 

During each experiment, the maximum non-dimensional peripheral speed of the 
cylinder, SZ = wmaxd/2U, equal to the peripheral speed divided by that of the free 

u ( f , t )  = uo(f)+u’(f) cos ( 2 @ + + ) + u , ( f , t ) ,  
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stream, was held constant, and the oscillation frequency f varied. The maximum 
peripheral speed of the cylinder varied from experiment to  experiment, and ranged 
between 0.5 and 3% (SZ between 0.005 and 0.03). For comparison, oscillation 
amplitudes used by Tokumaru & Dimotakis (1991) correspond to values of SZ up to 
16, much larger than those of the present study. Angular displacements of the 
cylinder were generally less than 5". In  the amplitude range studied, resulting 
velocity fluctuation amplitudes were found to  vary roughly linearly with cylinder 
oscillation amplitudes ($3.2). Oscillation frequencies ranged between 0.35 and 9 Hz, 
corresponding to  non-dimensional frequencies, fdlU, between 0.1 and 1.5, or 0.5 to 
8 times that of the natural Karman shedding frequency. The increment of 
frequencies tested depended on the change of response in any particular frequency 
range and the overall operational constraints of the flow facility. Typical runs at  any 
particular Reynolds number took between 8 and 16 h. Experimental data are 
summarized in table 1. 

At each oscillation frequency tested, the lock-in analyser was allowed to reach an 
equilibrium reading, consisting of, first, the vortex shedding process coming to 
equilibrium or adjusting to  the new forcing condition, and, second, the lock-in 
analyser registering an essentially steady (or averaged) response output. The time 
constant used for the lock-in analyser for each test was 100 s. Consequently, the 
detected velocity oscillations were limited to those within a very narrow frequency 
band (of width x 0.02 Hz) centred on f. The response amplitude represented an 
idealized sine-wave velocity oscillation a t  the frequency of reference, equation (3), 
essentially riding along the separated shear layer. Phase information was shown in 
degrees difference (or delay) between clockwise or counterclockwise motion of the 
cylinder and corresponding clockwise or counterclockwise roll-up of the shear layer. 

3. Results 
3.1. Response amplitude and forcing frequency 

The amplitudes of velocity fluctuations resulting from the forced cylinder oscillations 
are shown in terms of the fluctuating component, u', divided by the free-stream 
speed, U ,  and plotted against the non-dimensional forcing frequency, F = f d / U .  A 
characteristic response-amplitude curve is shown in figure 5. When the cylinder was 
oscillated a t  or near the natural Kirman frequency (Strouhal number approximately 
0.2), large velocity fluctuations were observed in the shear layers, generally 
synchronized with the cylinder oscillations, producing the large response peak. 
Oscillation magnitudes in this range were as large as 30 to  50% of the free stream. 
Flow visualization showed that the large velocity fluctuations corresponded to the 
shear layer moving back and forth across the probe, alternately exposing the sensor 
to fast- and slow-speed shear-layer fluid. 

For Reynolds numbers greater than around 500, a secondary, higher-frequency 
response appeared (figures 5 and 6), in addition to  the one a t  the KarmBn frequency. 
This response peak was typically broader and lower in amplitude than the Karman 
peak, and was associated with the forcing of the smaller secondary or shear-layer 
vortices (figure 1) .  The smaller vortices typically rode along the shear layers as they 
rolled up into the Karmin vortices that were forming. These velocity oscillations 
were typically of the order of 10% or less of the free-stream velocity. In  a number 
of experiments, a small peak was also observed at roughly twice the Karman 
frequency. At forcing frequencies above and below the primary and secondary 
response peaks, response as indicated by the lock-in analyser died off, and in many 
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FIGURE 6. Frequency-response curves for a range of Reynolds number. The normalized response 
Zu'/o,,d is shown. The dimensionless peripheral velocity SZ is 0.019,0.022,0.019,0.014, and 0.011 
respectively for Re of 450, 575, 785, 920, and 1175. Notice that the relative magnitude of the 
normalized shear-layer response increases with Re. 

cases was indistinguishable over background noise. For many forcing conditions, 
detected velocity oscillations were only intermittent, or possibly intermittently 
synchronized with the cylinder motion. Since the u'/U values shown are time- 
average values, the magnitudes of u'/U represent the average magnitude of the 
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FIGURE 7. Demonstration of the approximate linearity of the response with cylinder oscillation 
amplitude a t  various forcing frequencies F = f d / U  (Re = 1175, d = 1.27 cm, x/d = 1.0). F = 0.192 
appears t o  be close to, but slightly displaced from the natural shedding frequency. Under similar 
circumstances, measurements give a negligible ratio u' /U in the limit of vanishing 52. The reason 
natural shedding is not ordinarily detected by the lock-in amplifier is because of the very small 
effective bandwidth of the system. 

oscillations synchronized with the reference, or the fraction of time the oscillations 
were synchronized. These interpretations are compatible with oscilloscope records of 
the fluctuating voltage signal from the anemometer. 

As the Reynolds number was increased above 500, the secondary peak magnitude 
and width generally increased. This is illustrated best in figure 6, where the response 
amplitude u' /U has been normalized by the forcing amplitude wmaxd/2U for a 
number of experiments. 

3.2. Response amplitude and oscillation amplitude 
During a number of experiments, the amplitude of the response was tested against 
varied cylinder oscillation amplitude. Results are shown in figure 7 for Re = 1175. 
Two curves are shown for forcing in the KarmBn frequency range, with one test being 
close to the frequency of peak response and the other a t  a slightly lower frequency. 
The third curve is in the secondary, higher-frequency response range. The curves 
illustrate that in both ranges the response amplitude was roughly proportional to, or 
linear with, the oscillation amplitude. Rough linearity of the response was important 
for comparison of experiments since the relative cylinder oscillation amplitudes 
differed between experiments, and in addition, the angular velocity w ( t )  of the 
cylinder contained higher harmonic components. (An upper limit of the relative 
angular velocity amplitude of the nth odd harmonic may be found from the Fourier 
series coefficients of a square wave which decrease as l /n.)  With an approximately 
linear response, the higher-frequency content was therefore expected to only weakly 
affect the phase-sensitive detector output. A linear response also allowed comparison 
with linear instability theory ($4). Figure 7 also shows response amplitudes at  
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FIGURE 8. Response phase and forcing frequency (Re = 925, x/d = 1.5, Q = 0.025). 

frequencies shifted far from the primary and shear-layer peaks, which, as mentioned, 
were very low. 

In some tests the oscillation amplitudes were increased above the range shown in 
figure 7. In  these tests the responses appeared to saturate, in qualitative agreement 
with the theoretical results of Goldstein & Leib (1988) for externally excited shear 
layers. In  figure 6, the response, u'/U, divided by the cylinder oscillation magnitude, 
52 = om,, d /2U,  provides a normalized response value, 2u'lw,,, d. Since w,,, d / 2  is 
the maximum peripheral velocity of the cylinder, the normalized response values 
represent a crude amplification factor. It is interesting to note that cylinder 
oscillations were typically amplified by a factor of approximately 25 in the KBrmBn 
frequency range, and a factor of only 5 or 10 (or less, depending on Re) in the 
secondary range. 

3.3. Response phase 
At each frequency setting, the phase of the response was also recorded. Figure 8 
shows a typical phase curve. Characteristic of each curve is an overall decreasing 
phase angle, corresponding to an increasingly delayed response relative to the forcing 
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3 

FIGURE 9. Flow visualization showing the change in phase with respect t o  the cylinder motion near 
the KarmBn frequency, for Re = 825. In both cases the cylinder is at its maximum clockwise 
position. (Natural Karman frequency f K d / U  x 0.201.) (a) F = f d / U  = 0.20; ( b )  0.22. 

period. Near the natural Karman shedding frequency, a rapid phase change (of order 
180') was observed as the Karmdn frequency was crossed. This corresponded to the 
KBrman vortex formation essentially switching sides with respect to the cylinder 
motion (figure 9). As the forcing frequency was increased further, the phase varied 
essentially linearly with frequency, characteristic of the oscillations being convected 
or propagated along the separated shear layers (see 54). 
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For several experiments, the dependence of response amplitude and phase was 
tested against increasing or decreasing forcing frequency. Essentially no difference 
was observed for increasing or decreasing frequency for all tests, indicating a lack of 
significant hysteresis with forcing conditions in comparison with noise (Filler 1989). 

4. Discussion 
4.1. The shear-layer instability 

The secondary higher-frequency response peaks of 93 can be compared to the 
response for generic free shear layers studied theoretically by others. For a mean 
shear-layer flow with a wave-like disturbance or perturbation, the perturbation 
response can be characterized by the real part of the perturbation stream function, 
i.e. 

yY(x, y ,  t )  = $’(O, y ,  0) e-i(2xft-Lz) (4) 

(for example, Monkewitz & Huerre 1982). The wave-like perturbation grows or 
decays in time as it travels in the x-direction with phase speed c = 21tf/k’, where k‘ is 
the real part of the complex wavenumber, k = k‘+ik”, and 21tf is the angular 
frequency. The spatial amplification rate in the x-direction, k ,  has theoretically been 
shown to be frequency-dependent for the generic free shear layer (Michalke 1965), 
with the most amplified frequency, f *, related to the mean shear-layer speed E, and 
momentum thickness 8, by 

where the momentum thickness of the shear layer is defined as 

f*elz = 0.032, (5) 

I r m  

u, and u2 being the shear-layer fast and slow speeds, respectively (Monkewitz & 
Huerre 1982 and Ho & Huerre 1984, laminar shear layers). The saturated end- 
product vortices in experimentally perturbed shear layers have been found to evolve 
at essentially the same frequency as f *, and, further, vortices forming in unperturbed 
shear layers are found to have a most probable frequency, fm, of roughly this same 
value (Ho & Huang 1982 and Ho & Huerre, 1984). The theoretical studies also 
indicate that perturbations with frequencies up to approximately twice f * are 
amplified in the free shear layer. 

Roshko (1954), Churchill (1988, pp. 337-339), and others, relating the flow outside 
the boundary layer to the base pressure behind the cylinder, suggest that the typical 
value of the flow speed outside the boundary layer prior to separation is around 1.4U. 
Coarse velocity measurements as a part of this investigation (Filler 1989) indicate 
that this value is approximately correct for the outer- or fast-stream speed of the 
shear layer, once it separates from the cylinder and for up to one or more diameters 
downstream of separation. Assuming a relatively stagnant (average) flow inside the 
separating boundary layers, the mean speed E of the resulting shear layers may be 
approximated by +( 1.4U+ 0) ,  or 0.70U. 

Boundary-layer computations in Schlichting (1979, p. 216) suggest that the 
momentum thickness 0 of, the boundary layers prior to separation can be 
approximated by B x Cd Re-5, where C is approximately unity. Coarse measurements 
as a part of the present study (Filler 1989) indicate that the separated shear layer has 
approximately this same thickness to 1 to 1.5 diameters downstream of separation. 
C. H. K. Williamson (1989, personal communication) has taken measurements of the 
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1 2 3 4 5 6 7 8 

- w/asf) 
d u f'dRe-t a#/af (v/2rrxd) 

Re (Hz) (cm) (cmls) (deg./Hz) xld (10-3) 
f' 

300 - 0.95 2.93 - - 314 1.5 6.04 
375 - 0.95 3.66 - 208 1.5 3.93 
450 - 0.95 4.36 - 209 1.5 3.93 
510 (4 1.27 3.72 (4 - 237 1.5 2.44 
575 1.75 1.27 5.03 0.026 - 265 1.5 2.99 
630 (a) 0.95 6.25 (a) - 105 1.2 2.59 
690 2.60 1.27 5.27 0.034 - 208 1.5 2.31 
710 2.75 1.27 5.33 0.035 - 227 1.5 2.49 
745 2.50 1.27 5.64 0.029 - 197 1.5 2.18 
760 2.60 1.27 5.76 0.030 - 191 1.5 2.11 
785 3 .OO 1.27 5.85 0.033 - 178 1.3 2.32 
815 3.15 1.27 6.09 0.033 - 223 1.5 2.43 
875 3.30 1.27 6.95 0.029 - 162 1.5 1.88 
920 4.23 1.27 6.92 0.037 (4 1.5 (4 
925 3.65 1.27 7.41 0.029 - 165 1.5 1.92 
990 4.25 1.27 7.77 0.032 -116 1 .O 1.98 

1050 4.50 1.27 7.86 0.032 - 145 1.5 1.60 
1175 4.77 1.27 8.93 0.028 -119 1 .o 1.97 

average@) 0.031 

- 

- 

(a) The frequency of peak response was unclear or not apparent in this experiment. 
(b) Compare with 0.032 for theoretical studies of generic free shear layers (for example, Ho & 

( c )  Data not recorded for this experiment. 
Herre 1984). 

TABLE 1. Frequency f' of the maximum response for the shear-layer instability, phase derivative 
with frequency, and other experimental data 

shear-layer vorticity thickness one diameter downstream of separation that suggest 
a similar value of unity for C. 

Using the above relations for the separated-shear-layer mean speed and 
momentum thickness, the frequencies of maximum response, f', of the present study 
were compared to theoretically predicted frequencies of greatest amplification, e.g. 
the values off V/a  compared with 0.032 of Ho & Huerre (1984), where f 'e/a may be 
approximated by 

(6) 

Table 1 (column 5) shows the observed non-dimensional frequencies of maximum 
response using (6). The agreement with the theoretical value of 0.032 is acceptable. 
Furthermore, it was observed (for Re greater than x 500) that positive response to 
rotational oscillation of the cylinder continued up to frequencies of roughly 2f, which 
is what would be,expected in the generic shear-layer analogy. These results suggest, 
therefore, th& the shear layers separating from a circular cylinder are indeed 
comparable to generic free shear layers (prior to their roll-up into the Karman 
vortices), and, that the frequencies of greatest response are approximated by the 
theoretical frequency of maximum amplification rate for generic free shear layers. 

The frequencies of maximum responsef' of the present study were also divided by 
the natural Kkrman shedding frequencies fK,  and compared to the natural shear- 
layer vortex shedding frequencies from other researchers. The agreement with the 

f 'e/a x f'd Re-'/ = 0.7QU. 
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FIUURE 10. Comparison of normalized frequencies of maximum response from the present study 
(solid circles) with natural secondary shedding frequencies found by other authors for a range of 
Reynolds numbers : A, Bloor (1964) ; 0,  Gerrard (1978) ; a, (>, Wei t Smith (1986) ; 0,  Kourta 
et al. (1987). The line is given by equation (1).  

present data and equation (1) representing the trend of the data from Kourta et al. 
is good (figure lo), suggesting that the trend of the data from others continues down 
to around 500. Therefore, the frequencies of maximum response in the present 
(forced) study are also comparable to the naturally shedding shear-layer frequencies 
( fsL) observed by Bloor, Gerrard, and others at  higher Reynolds numbers, although 
naturally shedding shear-layer vortices have not readily been observed or reported 
by others for Reynolds numbers much below 1100. 

Rearrangement of the above relationships also allows a prediction of the 
frequencies of greatest response for the shear-layer vortex shedding frequency, and 
likewise a prediction equation for the naturally occurring secondary or shear-layer 
vortices. Equation (6), with f V I E  xf’elili x 0.032, gives, in terms of a non- 
dimensional shedding frequency, 

fsL d l U  x f ’dlU x 0.022Re4. (7) 

Measured values off’dlU are shown in figure 11 along with (7). A least-squares fit of 
the data gives f ’d/U=0.023Re0.4s6.  Both the least-squares fit and the more 
theoretically motivated equation (7)  are in good agreement with measured values of 
Dale & Holler (1969, equation (2)) and other researchers (assuming f K d / U  x 0.20 in 
the other studies). 

4.2. Response phase 
In  the range of the shear-layer instability, the phase variation with oscillation 
frequency was roughly linear. Considering again a disturbance of the form of (4) ,  
the phase of the disturbance, 4, may be expressed in radians as, qi = -Ys, or 
qi = -2xf S I C ,  where s is the propagation distance along the shear layer (figure 2) ,  and 
c is the phase speed. In the Reynolds-number range of the present study, separation 
occurs approximately halfway between the forward and rear stagnation points, i.e. 
at x w 0 (see for example, Churchill 1988, pp. 333-334). Assuming that the shear 
layers are roughly parallel to the wake axis prior the primary vortex roll-up, then 
s x x. Using for c the mean shear-layer speed ‘li (which is supported by experimental 
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FIGURE 11. The points are the non-dimensional frequencies of maximum response associated with 
the secondary shedding mode as a function of Reynolds number. The solid line is given by equation 
(7).  For comparison, the lower dashed curve represents Roshko's (1954) shedding frequencies for 
KLrman vortex shedding. The upper dashed curve is twice the natural KLrmAn frequency; note 
that it approaches the line from equation (7) at a Reynolds number near which the shear-layer 
vortex shedding becomes difficult to observe. 

evidence for free shear layers, Monkewitz & Huerre 1982 and Ho & Huerre 1984), the 
phase of the forced oscillations may be approximated $ x - 2nf x / w .  The derivative 
of the phase with respect to forcing frequency, a$/a f ,  is thus, 

a+/iy = - 27~s/c x - 2 n q t ~ .  (8a ,  b)  
Measured values of d$/lif are shown in table 1 (column 6) for a number of tests. It 

should be pointed out that while the response amplitude values for the secondary 
instability were nearly indistinguishable from the background for Re < 500, the 
response phase could be measured for Reynolds below 500. The measured values may 
be compared with predictions by noting the following relationship which follows 
from (8a )  : 

where K = cx/Us is a constant and v is kinematic viscosity. Assuming x x s and 
c x 

Values of - (a$/af) (v /2nxd)  are plotted against Re-' in figure 12. A least-squares 
fit of the data (constrained to pass through the origin) suggests a value for K of 0.60. 
The difference from 0.70 (approximately 15%) is due a t  least in part to  the under- 
estimation of s by x (figure 2). General scatter is likely to  be due to  the imprecision 
in the measurement of x (Filler 1989). The straight-line trend of the data, however, 
does suggest that the forced oscillations in the secondary higher-frequency regime 
behave as waves simply propagated along the shear layer a t  the mean speed a, prior 
to roll-up of the shear layers into the larger KBrmBn vortices. 

4.3. Response close to the natural Kdrmdn shedding frequency 
Rotational oscillation near the natural Karman frequency fK generally enhanced the 
natural Karman vortex shedding. Flow visualization indicated that vortex formation 
was more distinct and closer to the cylinder (Filler 1989) similar to the results of 
others using vibrational oscillation (e.g. Griffin & Ramberg 1974). As the natural 
Kirman frequency was crossed, the first vortex formed changed sides with respect 

Re-' = - K ( a + / a f )  (v/2nxd), (9) 

x 0.70U suggests K x 0.70. 
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FIGURE 12. Non-dimensional phase derivative with forcing frequency for varying cylinder size and 
propagation distance. ., d = 0.95 cm, xld = 1.2; 0 ,  d = 0.95 cm, xld = 1.5; 0,  d = 1.27 cm, 
xld = 1.0; A, d = 1.27 cm, xld = 1.3; 0,  d = 1.27 cm, xld = 1.5. The phase q5 is measured in 
radians. 

to the cylinder motion, corresponding to a phase change (or jump) of approximately 
180' (figure 8). At forcing frequencies slightly lower than the KarmBn frequency, the 
rotation of the cylinder and roll-up of the first vortex formed were in the same 
direction. As fK was crossed, the first vortex formed changed sides with respect to the 
cylinder motion (figure 9), and rolled up in the opposite direction to the corresponding 
cylinder rotation. A similar 180° phase jump has been observed by others for forced 
vibration of the cylinder perpendicular to the free stream (Zdravkovich 1982 and 
Ongoren & Rockwell 1988). The large response and rapid phase change for f near fK 
suggest that the near wake and shear layers respond to weak rotational oscillations 
in a way which is roughly analogous to a linear mechanical oscillator near resonance. 
The absence of significant hysteresis mentioned in $3.3 is consistent with this 
analogy. 

5. Conclusions and closing remarks 
Using a lock-in analyser connected to a hot-film anemometer placed in the shear 

layers separating from a circular cylinder, both the amplitude and phase of the 
frequency response of the cylinder near wake were measured directly. The present 
study shows first of all that small-amplitude rotational oscillations of the cylinder, 
of the order of 1-3% of the free-stream speed, couple with both the Karman and 
shear-layer vortex shedding modes. The oscillations were particularly effective in 
forcing the shear-layer mode. Close to the cylinder, and for frequencies significantly 
above the natural KBrmQn shedding frequency, the shear layers respond in a way 
compatible with what would be expected for free shear layers. The response of the 
shear layers to rotational oscillation suggests that for small amplitudes the 
oscillations act to provide weak antisymmetric perturbations to the flow, and thus 
allowed comparisons with theoretical results of others for generic free shear layers. 
Figure 1 (b )  and other observations show that the resulting shear-layer vortices form 
antisymmetrically whereas naturally occurring shear-layer vortices have been 
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reported to form symmetrically (Gerrard 1978). The frequency of maximum response 
of the shear layers to oscillation of the cylinder corresponds to the frequency of 
theoretical maximum amplification rate obtained by others, and the resulting 
oscillations in the shear layer are convected a t  roughly the mean shear-layer speed. 
The present study also shows that using the most amplified frequency predicted by 
others for free shear layers, and estimates of the separated shear-layer mean speed 
and momentum thickness, the shedding frequency of naturally occurring shear-layer 
vortices or transition waves can also be estimated. 

When the fundamental forcing frequency f is near the natural Kdrman shedding 
frequency fK, the observed response may be more difficult to model. The range of Re 
studied was well above the critical Reynolds number threshold Re, for the natural 
shedding of vortices. Typical reported values for Re, lie below 50; however, they 
depend on the cylinder’s end conditions and aspect ratio (Lee & Budwig 1991). 
Linear resonance responses to flow perturbations have been reported by Provansal, 
Mathis & Boyer (1987) when Re < Re,. Huerre & Monkewitz (1990, $56 and 7) and 
Oertel ( 1990) have reviewed the implications of hydrodynamic stability theory for 
the shedding of Karman vortices. A number of recent experiments (e.g. Olinger & 
Sreenivasan 1988 ; and Strykowski &, Sreenivasan 1990) have concentrated on the 
range of Re close to, but slightly above, Re, where the relevant instabilities are 
perhaps more subject to a quantitative analysis than for the range between 250 and 
1200 of the present experiments. In the supercritical region close to Re,, the wake 
acts like a nonlinear system having a limit cycle corresponding to Karman vortex 
shedding (Olinger & Sreenivasan 1988 ; Karniadakis & Triantafyllou 1989). Limit- 
cycle behaviour is also implicit in various phenomenological models of vortex 
shedding. For example, the model of Iwan & Blevins (1974) gives a Van der Pol 
oscillator even for the case of a stationary cylinder. As Re is increased sufficiently 
above Re,, Sreenivasan (1985) has given evidence that the dynamics of the wake 
appears to become that of a chaotic system for which the dimensionality generally 
increases with Re. 

The implications of the nonlinear dynamics of the wake on the interpretation of 
our response measurements (figures 5-8) have not been fully explored for f in the 
vicinity of fK. These measurements are primarily sensitive to velocity oscillations at  
(or very close to) the fundamental forcing frequency f. This frequency selectivity is 
because the bandwidths of the amplitude measurements were small as a consequence 
of the long integration time (100 s) of the lock-in amplifier. It was noted in $4.3 that 
the amplitude and phase measurements display an approximate similarity with the 
response of a linear harmonic oscillator having a natural frequency of fK. A possible 
explanation is that the rotational oscillations may be only coupled weakly to the 
Krirmdn shedding mode because of the low values for the dimensionless peripheral 
velocity 52. Limit-cycle oscillators, when only weakly driven at  a frequency slightly 
shifted from the natural frequency, can display a combination of responses 
associated with the natural and driven frequencies (Nayfeh & Mook 1979). Our 
measurements may correspond to the driven-frequency component of such a system. 
A detailed explanation of the observations for f in the vicinity of fK would be aided 
by higher resolution measurements than possible with the present apparatus. The 
response close to fK,  with the present apparatus, may have been affected by the 
aspect ratio of our cylinders and by possible oblique shedding of the Karman 
vortices. Nevertheless, it would be helpful to carry out a detailed two-dimensional 
numerical simulation, analogous to simulations given by Karniadakis & Triantafyllou 
for the response to an oscillation added to the free-stream velocity. 
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Appendix. Calibration of the lock-in analyser 
Calibration of the lock-in analyser (phase-sensitive detector) was necessary to 

reduce the oscillating anemometer voltage to a corresponding oscillating velocity, 
equation (3) of $2. The lock-in analyser measured only the magnitude E' and the 
phase q5 of the anemometer voltage oscillating at  the frequency of reference. The 
total anemometer voltage is assumed to be of the form 

E ( t )  = E,(f)+E'(f)cos(2~f+q5)+Er(f,t), (A 1) 

corresponding to the assumed velocity signal of equation (3). Here Er(f,  t )  is a zero- 
mean residual of oscillating voltage components at  frequencies other than f. The 
lock-in analyser output voltage E L  is given by KL E', where the coefficient KL was 
determined by application of a known voltage to the input of the analyser. The 
oscillating voltage, E ,  was then related to the corresponding oscillating velocity 
component through the anemometer calibration curve, i.e. 

u' = E au/aE (A21 
(assuming small oscillations) where au/aE is the slope of the anemometer calibration 
curve at fixed temperature. Owing to the nonlinearity of the anemometer response, 
however, au/aE varied as the average flow speed past the probe varied, which 
occurred between experiments and often with changing forcing conditions (such as 
varying the cylinder oscillation frequency). These changes were the most pronounced 
at higher Reynolds number where the shear layers were thinner, and where slight 
relative movement of the average shear-layer position exposed the probe to either 
faster or slower mean speed fluid. 

To compensate for the changing position or mean speed of the shear layer, the 
mean anemometer voltage E,  (corresponding to the mean speed in (Al))  was 
recorded a t  each frequency. The oscillating velocity signal was then computed based 
on the slope au/aE a t  the appropriate mean voltage E,. As shown in Filler (1989), 
however, such adjustment did not qualitatively change the results or shapes of the 
inferred frequency response curves in comparison with curves for which the 
dependence of au/aE on f was ignored. The adjusted response curves appeared, 
however, to have an overall reduction of noise. 

Finally, it should be pointed out that the oscillating component of the voltage 
signal was not always small as assumed in the above small-signal theory. Near the 
primary response peak, inferred velocity oscillations (peak-to-peak) were in some 
cases of the order of the free-stream speed itself. It was found, however, that using 
the small-signal approximation, (A 2) adequately represented the relative response 
for various forcing frequencies, and thus allowed the identification of the primary 
and secondary response peaks. 
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